

# 2022 Science Standards Reference for Curricular Materials

The purpose of this document is to assist educators in aligning the 2022 Idaho Content Standards for Science to existing science curricular materials. This document is organized by grade level K-5, grade bands 6-8 and 9-12.

\*NA in the National Standard column indicates there is not a correlated standard with the Idaho Standard.

#### Kindergarten Standards

| Idaho<br>Standard                              | National<br>Standard | Idaho Performance Standard                                                                                                                             | Practice                                        | ССС               |
|------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------|
| K-PS-1.1<br>Pushes, Pulls,                     | K-PS2-1              | With guidance and support, plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls | Planning &<br>Carrying Out                      | Cause &<br>Effect |
| and Motion                                     |                      | on the motion of an object.                                                                                                                            | Investigations                                  | Lifect            |
| K-PS-1.2<br>Motion Design<br>Solution          | K-PS2-2              | With guidance and support, analyze data to determine if a design solution works as intended to change the motion of an object with a push or a pull.   | Analyzing &<br>Interpreting<br>Data             | Cause &<br>Effect |
| K-PS-2.1<br>Sun's Energy<br>Warms the<br>Earth | K-PS3-1              | Make observations to determine the effect of the Sun's energy on the Earth's surface.                                                                  | Planning and<br>Carrying Out<br>Investigations  | Cause &<br>Effect |
| K-PS-2.2<br>Shade<br>Structure<br>Design       | K-PS3-2              | Design and build a structure that will reduce the warming effect of the Sun's energy on a material.                                                    | Constructing Explanations & Designing Solutions | Engineering       |
| K-LS-1.1<br>Plant and<br>Animal Needs          | K-LS1-1              | Use observations to describe how plants and animals are alike and different in terms of how they live and grow.                                        | Analyzing &<br>Interpreting<br>Data             | Patterns          |

| Idaho         | National |                                                                          |                 |            |
|---------------|----------|--------------------------------------------------------------------------|-----------------|------------|
| Standard      | Standard | Idaho Performance Standard                                               | Practice        | CCC        |
| K-ESS-1.1     | K-ESS2-1 | Use and share observations of local weather conditions to describe       | Analyzing &     | Patterns   |
| Weather       |          | variations in patterns throughout the year.                              | Interpreting    |            |
| Patterns      |          |                                                                          | Data            |            |
| K-ESS-1.2     | K-ESS2-2 | With guidance and support, use evidence to construct an explanation of   | Engaging in     | Systems    |
| Environmental |          | how plants and animals interact with their environment to meet their     | Argument from   | and System |
| Interactions  |          | needs.                                                                   | Evidence        | Models     |
| K-ESS-2.1     | K-ESS3-1 | Use a model to represent the relationship between the needs of different | Developing and  | Systems    |
| Environmental |          | plants and animals and the places they live.                             | Using Models    | and System |
| Relationships |          |                                                                          |                 | Models     |
| K-ESS-2.2     | K-ESS3-2 | Ask questions to obtain information about the purpose of weather         | Asking Qs,      | Cause and  |
| Forecasting   |          | forecasting to prepare for, and respond to, severe weather.              | Defining        | Effect     |
| Severe        |          |                                                                          | Problems        |            |
| Weather       |          |                                                                          |                 |            |
| K-ESS-2.3     | K-ESS3-3 | Communicate ideas that would enable humans to interact in a beneficial   | Obtaining,      | Cause and  |
| Environmental |          | way with the land, water, air, and/or other living things in the local   | Evaluating, and | Effect     |
| Solutions     |          | environment.                                                             | Communicating   |            |
|               |          |                                                                          | Information     |            |

### First Grade Standards

| Idaho Standard                                     | National<br>Standard | Idaho Performance Standard                                                                                                                                        | Practice                                                | ССС                    |
|----------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------|
| 1-PS-1.1<br>Sound &<br>Vibrating<br>Materials      | 1-PS4-1              | With guidance and support, plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate. | Planning and<br>Carrying Out<br>Investigations          | Cause and<br>Effect    |
| 1-PS-1.2<br>Illumination and<br>Darkness           | 1-PS4-2              | With guidance and support, make observations to construct an evidence-based explanation that objects in darkness can be seen only when illuminated.               | Constructing Explanation, Designing Solutions           | Cause and<br>Effect    |
| 1-PS-1.3<br>Light and<br>Materials                 | 1-PS4-3              | With guidance and support, plan and conduct investigations to determine the effect of placing materials in the path of a beam of light.                           | Planning and<br>Carrying Out<br>Investigations          | Cause and<br>Effect    |
| 1-PS-1.4<br>Communication<br>Device Design         | 1-PS4-4              | Design and build a device that uses light or sound to communicate over a distance.                                                                                | Constructing Explanation, Designing Solutions           | Engineering            |
| 1-LS-1.1<br>Biomimicry<br>Design Solution          | 1-LS1-1              | Design and build a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.  | Constructing Explanation, Designing Solutions           | Structure and Function |
| 1-LS-1.2<br>Behavior -<br>Parents and<br>Offspring | 1-LS1-2              | Obtain information to identify patterns of behavior in parents and offspring that help offspring survive.                                                         | Obtaining,<br>Evaluating,<br>Communicate<br>Information | Patterns               |
| 1-LS-1.3<br>Living vs Non-<br>living               | NA                   | Use classification supported by evidence to differentiate between living and non-living items.                                                                    | Analyzing &<br>Interpreting<br>Data                     | Patterns               |

|                   | National |                                                                     |                |          |
|-------------------|----------|---------------------------------------------------------------------|----------------|----------|
| Idaho Standard    | Standard | Idaho Performance Standard                                          | Practice       | CCC      |
| 1-LS-2.1          | 1-LS3-1  | Make observations to construct an evidence-based explanation        | Constructing   | Patterns |
| Parents &         |          | that offspring are similar to, but not identical to, their parents. | Explanation,   |          |
| Offspring         |          |                                                                     | Designing      |          |
|                   |          |                                                                     | Solutions      |          |
| 1-ESS-1.1         | 1-ESS1-1 | Use observations of the Sun, Moon, and stars to describe            | Analyzing and  | Patterns |
| Sun, Moon, and    |          | patterns that can be predicted.                                     | Interpreting   |          |
| Star Patterns     |          |                                                                     | Data           |          |
| 1-ESS-1.2         | 1-ESS1-2 | Make observations at different times of year to relate the          | Planning and   | Patterns |
| Seasonal Sunlight |          | amount of daylight to the time of year.                             | Carrying Out   |          |
|                   |          |                                                                     | Investigations |          |

# Second Grade Standards

| Idaho        | National   |                                                                               |                  |           |
|--------------|------------|-------------------------------------------------------------------------------|------------------|-----------|
| Standard     | Standard   | Idaho Performance Standard                                                    | Practice         | CCC       |
| 2-PS-1.1     | 2-PS1-1    | Plan and conduct an investigation to describe and classify different kinds of | Planning and     | Patterns  |
| Material     |            | materials by their observable properties.                                     | Carrying Out     |           |
| Properties   |            |                                                                               | Investigations   |           |
| 2-PS-1.2     | 2-PS1-2    | Analyze data obtained from testing different materials to determine which     | Analyzing and    | Cause     |
| Materials    |            | materials have the properties that are best suited for an intended purpose.   | Interpreting     | and       |
| Testing      |            |                                                                               | Data             | Effect    |
| 2-PS-1.3     | 2-PS1-3    | Make observations to construct an evidence-based argument that objects,       | Constructing     | Energy    |
| Objects and  |            | when disassembled, may be used to create new objects using the same set of    | Explanations     | and       |
| Pieces       |            | components.                                                                   | and Designing    | Matter    |
|              |            |                                                                               | Solutions        |           |
| 2-PS-1.4     | 2-PS1-4    | Construct an argument with evidence that some changes caused by heating       | Engaging in      | Cause     |
| Reversible   |            | or cooling can be reversed and some cannot.                                   | Argument from    | and       |
| &            |            |                                                                               | Evidence         | Effect    |
| Irreversible |            |                                                                               |                  |           |
| Changes      |            |                                                                               |                  |           |
| 2-LS-1.1     | 2-LS2-1    | Plan and conduct an investigation to determine the impact of light and water  | Planning and     | Cause     |
| Plant        |            | on the growth of plants.                                                      | Carrying Out     | and       |
| Needs        |            |                                                                               | Investigations   | Effect    |
| 2-LS-1.2     | 2-LS2-2    | Develop a model that demonstrates how plants depend on animals for            | Developing and   | Structure |
| Seeds &      |            | pollination or the dispersal of seeds.                                        | Using Models     | and       |
| Pollination  |            |                                                                               | J                | Function  |
| 2-LS-2.1     | 2-LS4-1    | Make observations of plants and animals to compare the diversity of life in   | Planning and     | Patterns  |
| Habitats     | · <b>-</b> | different habitats.                                                           | Carrying Out     |           |
| and          |            |                                                                               | Investigations   |           |
| Biodiversity |            |                                                                               | 1111636184610113 |           |

| Idaho     | National |                                                                              |                |           |
|-----------|----------|------------------------------------------------------------------------------|----------------|-----------|
| Standard  | Standard | Idaho Performance Standard                                                   | Practice       | CCC       |
| 2-ESS-1.1 | 2-ESS1-1 | Use information from several sources to provide evidence that Earth events   | Constructing   | Stability |
| Earth     |          | can occur quickly or slowly.                                                 | Explanations,  | and       |
| Events    |          |                                                                              | Designing      | Change    |
|           |          |                                                                              | Solutions      |           |
| 2-ESS-2.1 | 2-ESS2-1 | Compare multiple solutions designed to slow or prevent wind or water from    | Constructing   | Stability |
| Erosion   |          | changing the shape of the land.                                              | Explanations,  | and       |
| Design    |          |                                                                              | Designing      | Change    |
| Solution  |          |                                                                              | Solutions      |           |
| 2-ESS-2.2 | 2-ESS2-2 | Develop a model to represent the shapes and kinds of land and bodies of      | Developing and | Patterns  |
| Mapping   |          | water in an area.                                                            | Using Models   |           |
| Land &    |          |                                                                              |                |           |
| Water     |          |                                                                              |                |           |
| 2-ESS-2.3 | 2-ESS2-3 | Obtain information to identify where water is found on Earth and that it can | Obtaining, &   | Patterns  |
| Water on  |          | be solid or liquid.                                                          | Communicating  |           |
| Earth     |          |                                                                              | Information    |           |

### Third Grade Standards

| Idaho         | National |                                                                              |                |             |
|---------------|----------|------------------------------------------------------------------------------|----------------|-------------|
| Standard      | Standard | Idaho Performance Standard                                                   | Practice       | ccc         |
| 3-PS-1.1      | 3-PS2-1  | Plan and conduct an investigation to provide evidence of the effects of      | Planning and   | Cause and   |
| Balanced and  |          | balanced and unbalanced forces on the motion of an object.                   | Carrying Out   | Effect      |
| Unbalanced    |          |                                                                              | Investigations |             |
| Forces        |          |                                                                              |                |             |
| 3-PS-1.2      | 3-PS2-2  | Make observations and/or measurements of an object's motion to provide       | Planning and   | Patterns    |
| Predicting    |          | evidence that a pattern can be used to predict future motion.                | Carrying Out   |             |
| Future Motion |          |                                                                              | Investigations |             |
| 3-PS-1.3      | 3-PS2-3  | Ask questions to determine cause and effect relationships of static          | Asking         | Cause and   |
| Electric &    |          | electricity or magnetic interactions between two objects not in contact      | Questions and  | Effect      |
| Magnetic      |          | with each other.                                                             | Defining       |             |
| Forces        |          |                                                                              | Problems       |             |
| 3-PS-1.4      | 3-PS2-4  | Define a problem that can be solved by applying scientific ideas about       | Asking         | Engineering |
| Magnetic      |          | magnets.                                                                     | Questions and  |             |
| Design        |          |                                                                              | Defining       |             |
| Solution      |          |                                                                              | Problems       |             |
| 3-LS-1.1      | 3-LS1-1  | Develop models to demonstrate that living things, although they have         | Developing and | Patterns    |
| Life Cycles   |          | unique and diverse life cycles, all have birth, growth, reproduction, and    | using models   |             |
|               |          | death in common.                                                             |                |             |
| 3-LS-2.1      | 3-LS2-1  | Construct an argument that some animals form groups that help members        | Engaging in    | Cause and   |
| Animal        |          | survive.                                                                     | Argument from  | Effect      |
| Groups        |          |                                                                              | Evidence       |             |
| 3-LS-3.1      | 3-LS3-1  | Analyze and interpret data to provide evidence that plants and animals       | Analyzing and  | Patterns    |
| Inheritance & |          | have traits inherited from parents and that variation of these traits exists | Interpreting   |             |
| Variation of  |          | in a group of similar organisms.                                             | Data           |             |
| Traits        |          |                                                                              |                |             |

| Idaho                                                  | National |                                                                                                                                                           | _                                                    |                     |
|--------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------|
| Standard                                               | Standard | Idaho Performance Standard                                                                                                                                | Practice                                             | CCC                 |
| 3-LS-3.2                                               | 3-LS3-2  | Use evidence to support the explanation that traits can be influenced by                                                                                  | Constructing                                         | Cause and           |
| Environmental                                          |          | the environment.                                                                                                                                          | Explanations                                         | Effect              |
| Influence on                                           |          |                                                                                                                                                           | and Designing                                        |                     |
| Traits                                                 |          |                                                                                                                                                           | Solutions                                            |                     |
| 3-LS-3.3<br>Adaptations<br>and Survival                | 3-LS4-3  | Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all. | Engaging in<br>Argument from<br>Evidence             | Cause and<br>Effect |
| 3-ESS-1.1<br>Seasonal<br>Weather<br>Conditions         | 3-ESS2-1 | Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.                               | Analyzing and<br>Interpreting<br>Data                | Patterns            |
| 3-ESS-1.2<br>World<br>Climates                         | 3-ESS2-2 | Obtain and combine information to describe climates in different regions of the world.                                                                    | Obtaining, Evaluating, and Communicating Information | Patterns            |
| 3-ESS-2.1<br>Weather-<br>Related<br>Hazard<br>Solution | 3-ESS3-1 | Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.                                                   | Engaging in<br>Argument from<br>Evidence             | Cause and<br>Effect |

### Fourth Grade Standards

| Idaho       | National |                                                                             |                  |          |
|-------------|----------|-----------------------------------------------------------------------------|------------------|----------|
| Standard    | Standard | Idaho Performance Standard                                                  | Practice         | CCC      |
| 4-PS-1.1    | 4-PS3-1  | Use evidence to construct an explanation relating the speed of an object to | Constructing     | Energy   |
| Motion      |          | the energy of that object.                                                  | Explanations and | and      |
| Energy      |          |                                                                             | Designing        | Matter   |
|             |          |                                                                             | Solutions        |          |
| 4-PS-1.2    | 4-PS3-2  | Make observations to provide evidence that energy can be transferred by     | Planning and     | Energy   |
| Energy      |          | heat, sound, light, and electric currents.                                  | Carrying Out     | and      |
| Transfer    |          |                                                                             | Investigations   | Matter   |
| 4-PS-1.3    | 4-PS3-3  | Ask questions and predict outcomes about the changes in energy that occur   | Asking Questions | Energy   |
| Energy in   |          | when objects collide.                                                       | and Defining     | and      |
| Collisions  |          |                                                                             | Problems         | Matter   |
| 4-PS-1.4    | 4-PS3-4  | Apply scientific ideas to design, test, and refine a device that converts   | Constructing     | Energy   |
| Energy      |          | energy from one form to another.                                            | Explanations and | and      |
| Conversion  |          |                                                                             | Designing        | Matter   |
| Device      |          |                                                                             | Solutions        |          |
| 4-PS-2.1    | 4-PS4-1  | Develop a model of a simple mechanical wave to describe patterns of         | Developing and   | Patterns |
| Wave Model  |          | amplitude and wavelength and that waves can cause objects to move.          | Using Models     |          |
| 4-PS-2.2    | 4-PS4-2  | Develop a model to describe that light reflecting from objects and entering | Developing and   | Cause    |
| Light and   |          | the eye allows objects to be seen.                                          | Using Models     | and      |
| Vision      |          |                                                                             |                  | Effect   |
| 4-PS-2.3    | 4-PS4-3  | Generate and compare multiple solutions that use patterns to transfer       | Constructing     | Patterns |
| Information |          | information.                                                                | Explanations,    |          |
| Transfer    |          |                                                                             | Designing        |          |
| Solution    |          |                                                                             | Solutions        |          |

| Idaho                                                    | National |                                                                                                                                                                                            |                                                      |                                    |
|----------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------|
| Standard                                                 | Standard | Idaho Performance Standard                                                                                                                                                                 | Practice                                             | CCC                                |
| 4-LS-1.1<br>Internal and<br>External<br>Structures       | 4-LS1-1  | Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.                                 | Engaging in<br>Argument from<br>Evidence             | Systems<br>and<br>System<br>Models |
| 4-LS-1.2<br>Sensation,<br>Processing,<br>and<br>Response | 4-LS1-2  | Use a model to describe how animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways. | Developing and<br>Using Models                       | Systems<br>and<br>System<br>Models |
| 4-ESS-1.1<br>Evidence<br>from Rock<br>Layers             | 4-ESS1-1 | Identify evidence from patterns in rock formations and fossils in rock layers for changes in a landscape over time to support an explanation for changes in a landscape over time.         | Constructing Explanations and Designing Solutions    | Patterns                           |
| 4-ESS-2.1<br>Weathering<br>and Erosion                   | 4-ESS2-1 | Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.                                          | Planning and<br>Carrying Out<br>Investigations       | Cause<br>and<br>Effect             |
| 4-ESS-2.2<br>Mapping<br>Earth's<br>Features              | 4-ESS2-2 | Analyze and interpret data from maps to describe patterns of Earth's features.                                                                                                             | Analyzing and<br>Interpreting Data                   | Patterns                           |
| 4-ESS-3.1<br>Natural<br>Resources &<br>Energy            | 4-ESS3-1 | Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.                                                 | Obtaining, Evaluating, and Communicating Information | Cause<br>and<br>Effect             |
| 4-ESS-3.2<br>Natural<br>Hazard<br>Design<br>Solution     | 4-ESS3-2 | Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.                                                                                        | Constructing Explanations and Designing Solutions    | Cause<br>and<br>Effect             |

### Fifth Grade Standards

| Idaho<br>Standard                       | National<br>Standard | Idaho Performance Standard                                                                                                                                                               | Practice                                       | CCC                                      |
|-----------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------|
| 5-PS-1.1<br>Particle Model<br>of Matter | 5-PS1-1              | Develop a model to describe that matter is made of particles too small to be seen.                                                                                                       | Developing and<br>Using Models                 | Scale,<br>Proportion,<br>and<br>Quantity |
| 5-PS-1.2<br>Conservation<br>of Matter   | 5-PS1-2              | Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved. | Using Mathematics and Computational Thinking   | Scale,<br>Proportion,<br>and<br>Quantity |
| 5-PS-1.3<br>Material<br>Properties      | 5-PS1-3              | Make observations and measurements to identify materials based on their properties.                                                                                                      | Planning and<br>Carrying Out<br>Investigations | Scale, Proportion, and Quantity          |
| 5-PS-1.4<br>Mixing<br>Substances        | 5-PS1-4              | Conduct an investigation to determine whether the mixing of two or more substances results in new substances.                                                                            | Planning and<br>Carrying Out<br>Investigations | Cause and<br>Effect                      |
| 5-PS-2.1<br>Gravitational<br>Force      | 5-PS2-1              | Support an argument that Earth's gravitational force exerted on objects is directed downward.                                                                                            | Engaging in<br>Argument from<br>Evidence       | Cause and<br>Effect                      |
| 5-PS-3.1<br>Food Energy<br>from the Sun | 5-PS3-1              | Use models to describe that energy in animals' food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the Sun.                                    | Developing and<br>Using Models                 | Energy and<br>Matter                     |
| 5-LS-1.1<br>Plant<br>Requirements       | 5-LS1-1              | Support an argument that plants get what they need for growth chiefly from air, water, and energy from the Sun.                                                                          | Engaging in<br>Argument from<br>Evidence       | Energy and<br>Matter                     |

| Idaho                                                   | National |                                                                                                                                                                                                |                                                   |                                          |
|---------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------|
| Standard                                                | Standard | Idaho Performance Standard                                                                                                                                                                     | Practice                                          | CCC                                      |
| 5-LS-2.1 Fossil Evidence of Past Environments           | 5-LS4-1  | Analyze and interpret data from fossils to provide evidence of the types of organisms and the environments that existed long ago and compare those to living organisms and their environments. | Analyzing and<br>Interpreting<br>Data             | Scale,<br>Proportion,<br>and<br>Quantity |
| 5-LS-2.2<br>Variation,<br>Survival, and<br>Reproduction | 5-LS4-2  | Construct an argument with evidence for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.       | Constructing Explanations and Designing Solutions | Cause and<br>Effect                      |
| 5-LS-2.3<br>Environmental<br>Change<br>Solution         | 5-LS4-4  | Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals living there may change.                                       | Engaging in<br>Argument from<br>Evidence          | Systems<br>and<br>System<br>Models       |
| 5-LS-2.4<br>Matter Cycles                               | 5-LS2-1  | Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.                                                                                    | Developing and<br>Using Models                    | Systems<br>and<br>System<br>Models       |
| 5-ESS-1.1<br>Stellar<br>Brightness<br>and Distance      | 5-ESS1-1 | Support an argument that differences in the apparent brightness of the Sun compared to other stars is due to their relative distances from the Earth.                                          | Engaging in<br>Argument from<br>Evidence          | Scale,<br>Proportion,<br>and<br>Quantity |
| 5-ESS-1.2<br>Daily and<br>Seasonal Sky<br>Changes       | 5-ESS1-2 | Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.        | Analyzing and<br>Interpreting<br>Data             | Patterns                                 |
| 5-ESS-2.1<br>Earth Sphere<br>Interactions               | 5-ESS2-1 | Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.                                                                           | Developing and<br>Using Models                    | Systems &<br>System<br>Models            |

| Idaho        | National |                                                                            |                 |             |
|--------------|----------|----------------------------------------------------------------------------|-----------------|-------------|
| Standard     | Standard | Idaho Performance Standard                                                 | Practice        | CCC         |
| 5-ESS-2.2    | 5-ESS2-2 | Describe and graph the relative amounts of fresh and salt water in various | Using           | Scale,      |
| Water        |          | reservoirs, to interpret and analyze the distribution of water on Earth.   | Mathematics     | Proportion, |
| Availability |          |                                                                            | and             | and         |
| and          |          |                                                                            | Computational   | Quantity    |
| Distribution |          |                                                                            | Thinking        |             |
| 5-ESS-3.1    | 5-ESS3-1 | Obtain and combine information about ways communities protect Earth's      | Obtaining,      | Systems     |
| Protecting   |          | resources and environment using scientific ideas.                          | Evaluating, and | and         |
| Earth's      |          |                                                                            | Communicating   | System      |
| Resources    |          |                                                                            | Information     | Models      |

# Middle School Physical Science Standards

| Idaho<br>Standard                                     | National<br>Standard | Idaho Performance Standard                                                                                                                                  | Practice                                             | ССС                                     |
|-------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------|
| MS-PS-1.1<br>Atomic Model                             | PS 1-1               | Develop models to describe the atomic composition of simple molecules.                                                                                      | Developing and<br>Using Models                       | Scale,<br>Proportion<br>and<br>Quantity |
| MS-PS-1.2<br>Chemical<br>Properties and<br>Reactions  | PS1-2                | Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.       | Analyzing and<br>Interpreting<br>Data                | Patterns                                |
| MS-PS-1.3<br>Synthetic<br>Materials                   | PS 1-3               | Construct a scientific explanation, based on evidence, to describe that synthetic materials come from natural resources.                                    | Obtaining, Evaluating, and Communicating Information | Structure<br>and<br>Function            |
| MS-PS-1.4<br>Thermal<br>Energy and<br>Particle Motion | PS 1-4               | Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. | Developing and<br>Using Models                       | Cause and<br>Effect                     |
| MS-PS-1.5<br>Conservation<br>of Mass                  | PS 1-5               | Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.                        | Developing and<br>Using Models                       | Energy and<br>Matter                    |
| MS-PS-1.6<br>Thermal<br>Energy Design<br>Project      | PS 1-6               | Undertake a design project to construct, test, and/or modify a device that either releases or absorbs thermal energy by chemical processes.                 | Constructing Explanations and Designing Solutions    | Energy and<br>Matter                    |

| Idaho                                                          | National |                                                                                                                                                                                               |                                                   |                                         |
|----------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------|
| Standard                                                       | Standard | Idaho Performance Standard                                                                                                                                                                    | Practice                                          | CCC                                     |
| MS-PS-2.1<br>Collision<br>Design<br>Solution                   | PS 2-1   | Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.                                                                                     | Constructing Explanations and Designing Solutions | Systems<br>and<br>System<br>Models      |
| MS-PS-2.2<br>Forces, Mass<br>and the<br>Motion of an<br>Object | PS 2-2   | Plan and conduct an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object.                        | Planning and<br>Carrying Out<br>Investigations    | Stability<br>and<br>Change              |
| MS-PS-2.3<br>Electric and<br>Magnetic<br>Forces                | PS 2-3   | Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.                                                                                   | Asking Questions and Defining Problems            | Cause and<br>Effect                     |
| MS-PS-2.4<br>Gravitational<br>Interactions                     | PS 2-4   | Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.                           | Engaging in<br>Argument from<br>Evidence          | Systems<br>and<br>System<br>Models      |
| MS-PS-2.5<br>Electric and<br>Magnetic<br>Fields                | PS 2-5   | Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact. | Planning and<br>Carrying Out<br>Investigations    | Cause and<br>Effect                     |
| MS-PS-3.1<br>Kinetic Energy                                    | PS 3-1   | Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.                                    | Analyzing and<br>Interpreting<br>Data             | Scale,<br>Proportion<br>and<br>Quantity |

| Idaho<br>Standard                                                      | National<br>Standard | Idaho Performance Standard                                                                                                                                                                                                   | Practice                                          | CCC                                     |
|------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------|
| MS-PS-3.2.<br>Potential<br>Energy                                      | PS 3-2               | Develop a model to describe the relationship between the relative positions of objects interacting at a distance and the relative potential energy in the system.                                                            | Developing and<br>Using Models                    | Systems<br>and<br>System<br>Models      |
| MS-PS-3.3<br>Thermal<br>Energy<br>Transfer<br>Solution                 | PS 3-3               | Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.                                                                                              | Constructing Explanations and Designing Solutions | Energy and<br>Matter                    |
| MS-PS-3.4<br>Thermal<br>Energy<br>Transfer                             | PS 3-4               | Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. | Planning and<br>Carrying Out<br>Investigations    | Scale,<br>Proportion<br>and<br>Quantity |
| MS-PS-3.5<br>Energy<br>Transfer to or<br>from an Object                | PS 3-5               | Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.                                                                   | Engaging in<br>Argument from<br>Evidence          | Energy and<br>Matter                    |
| MS-PS-4.1<br>Wave<br>Properties                                        | PS 4-1               | Use diagrams of a simple wave to explain that (1) a wave has a repeating pattern with a specific amplitude, frequency, and wavelength, and (2) the amplitude of a wave is related to the energy in the wave.                 | Developing and<br>Using Models                    | Patterns                                |
| MS-PS-4.2<br>Wave<br>Reflection,<br>Absorption,<br>and<br>Transmission | PS 4-2               | Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.                                                                                                            | Developing and<br>Using Models                    | Structure<br>and<br>Function            |

| Idaho          | National |                                                                         |                 |           |
|----------------|----------|-------------------------------------------------------------------------|-----------------|-----------|
| Standard       | Standard | Idaho Performance Standard                                              | Practice        | CCC       |
| MS-PS-4.3      | PS 4-3   | Present qualitative scientific and technical information to support the | Obtaining,      | Structure |
| Digitized Wave |          | claim that digitized signals (0s and 1s) can be used to encode and      | Evaluating, and | and       |
| Signals        |          | transmit information.                                                   | Communicating   | Function  |
|                |          |                                                                         | Information     |           |

### Middle School Life Science Standards

| Idaho               | National |                                                                             |                |             |
|---------------------|----------|-----------------------------------------------------------------------------|----------------|-------------|
| Standard            | Standard | Idaho Performance Standard                                                  | Practice       | CCC         |
| MS-LS-1.1           | LS 1-1   | Conduct an investigation to provide evidence that living things are made    | Planning and   | Scale,      |
| Cell Theory         |          | of cells; either one cell or many different numbers and types of cells.     | Carrying Out   | Proportion, |
|                     |          |                                                                             | Investigations | Quantity    |
| MS-LS-1.2           | LS 1-2   | Develop and use a model to describe the function of a cell as a whole and   | Developing and | Structure   |
| Cell Parts and      |          | ways parts of cells contribute to the function.                             | Using Models   | and         |
| Function            |          |                                                                             |                | Function    |
| MS-LS-1.3           | LS 1-3   | Make a claim supported by evidence for how a living organism is a system    | Engaging in    | Systems &   |
| Interacting         |          | of interacting subsystems composed of groups of cells.                      | Argument from  | System      |
| <b>Body Systems</b> |          |                                                                             | Evidence       | Models      |
| MS-LS-1.4           | NA       | Construct a scientific argument based on evidence to defend a claim of life | Engaging in    | Structure   |
| Characteristics     |          | for a specific object or organism.                                          | Argument from  | and         |
| of Life             |          |                                                                             | Evidence       | Function    |
| MS-LS-1.5           | LS 1-6   | Construct a scientific explanation based on evidence for the role of        | Constructing   | Energy and  |
| Photosynthesis      |          | photosynthesis in the cycling of matter and flow of energy into and out of  | Explanations   | Matter      |
| - Matter            |          | organisms.                                                                  | and Designing  |             |
| Cycling and         |          |                                                                             | Solutions      |             |
| <b>Energy Flow</b>  |          |                                                                             |                |             |
| MS-LS-1.6           | LS 1-7   | Develop a conceptual model to describe how food is rearranged through       | Developing and | Energy and  |
| Food and            |          | chemical reactions forming new molecules that support growth and/or         | Using Models   | Matter      |
| Chemical            |          | release energy as matter moves through an organism.                         |                |             |
| Reactions           |          |                                                                             |                |             |
| MS-LS-2.1           | LS 2-1   | Analyze and interpret data to provide evidence for the effects of resource  | Analyzing and  | Cause and   |
| Effects of          |          | availability on organisms and populations of organisms in an ecosystem.     | Interpreting   | Effect      |
| Resource            |          |                                                                             | Data           |             |
| Availability        |          |                                                                             |                |             |

| Idaho                                                               | National |                                                                                                                                                                                           |                                                   |                              |
|---------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------|
| Standard                                                            | Standard | Idaho Performance Standard                                                                                                                                                                | Practice                                          | CCC                          |
| MS-LS-2.2<br>Relationships<br>in Ecosystems                         | LS 2-2   | Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.                                                                               | Constructing Explanations and Designing Solutions | Patterns                     |
| MS-LS-2.3<br>Matter Cycling<br>and Energy<br>Flow in<br>Ecosystems  | LS 2-3   | Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.                                                                    | Developing and<br>Using Models                    | Energy and<br>Matter         |
| MS-LS-2.4<br>Energy Flow &<br>Trophic Levels                        | NA       | Develop a model to describe the flow of energy through the trophic levels of an ecosystem.                                                                                                | Developing and<br>Using Models                    | Energy and<br>Matter         |
| MS-LS-2.5<br>Ecosystem<br>Interactions                              | LS 2-4   | Construct an argument supported by evidence that changes to physical or biological components of an ecosystem affect populations.                                                         | Engaging in<br>Argument from<br>Evidence          | Stability<br>and<br>Change   |
| MS-LS-2.6<br>Biodiversity<br>and Ecosystem<br>Services<br>Solutions | LS 2-5   | Design and evaluate solutions for maintaining biodiversity and ecosystem services.                                                                                                        | Constructing Explanations and Designing Solutions | Stability<br>and<br>Change   |
| MS-LS-3.1<br>Mutations -<br>Harmful,<br>Beneficial or<br>Neutral    | LS 3-1   | Develop and use a model to describe why mutations may result in harmful, beneficial, or neutral effects to the structure and function of the organism.                                    | Developing and<br>Using Models                    | Structure<br>and<br>Function |
| MS-LS-3.2<br>Asexual and<br>Sexual<br>Reproduction                  | LS 3-2   | Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. | Developing and<br>Using Models                    | Cause and<br>Effect          |

| Idaho           | National |                                                                                |               |           |
|-----------------|----------|--------------------------------------------------------------------------------|---------------|-----------|
| Standard        | Standard | Idaho Performance Standard                                                     | Practice      | CCC       |
| MS-LS-4.1       | LS 4-1   | Analyze and interpret data for patterns in the fossil record that document     | Analyzing and | Patterns  |
| Fossil Evidence |          | the existence, diversity, extinction, and change of life forms throughout      | Interpreting  |           |
| of Common       |          | the history of life on Earth under the assumption that natural laws operate    | Data          |           |
| Ancestry        |          | today as in the past.                                                          |               |           |
| MS-LS-4.2       | LS 4-2   | Apply scientific ideas to construct an explanation for the anatomical          | Constructing  | Patterns  |
| Anatomical      |          | similarities and differences among modern organisms and between                | Explanations  |           |
| Evidence of     |          | modern and fossil organisms to infer relationships.                            | and Designing |           |
| Evolutionary    |          |                                                                                | Solutions     |           |
| Relationships   |          |                                                                                |               |           |
| MS-LS-4.3       | NA       | Analyze visual evidence to compare patterns of similarities in the             | Analyzing and | Patterns  |
| Homologous      |          | anatomical structures across multiple species of similar classification levels | Interpreting  |           |
| Structures      |          | to identify relationships.                                                     | Data          |           |
| MS-LS-4.4       | LS 4-4   | Construct an explanation based on evidence that describes how genetic          | Constructing  | Cause and |
| Natural         |          | variations of traits in a population increase some individuals' probability of | Explanations  | Effect    |
| Selection       |          | surviving and reproducing in a specific environment.                           | and Designing |           |
|                 |          |                                                                                | Solutions     |           |
| MS-LS-4.5       | LS 4-5   | Obtain, evaluate, and communicate information about how technologies           | Obtaining,    | Cause and |
| Artificial      |          | allow humans to influence the inheritance of desired traits in organisms.      | Evaluating,   | Effect    |
| Selection       |          |                                                                                | Communicating |           |
|                 |          |                                                                                | Information   |           |
| MS-LS-4.6       | LS 4-6   | Use mathematical models to support explanations of how natural                 | Using         | Cause and |
| Adaptation of   |          | selection may lead to increases and decreases of specific traits in            | Mathematics   | Effect    |
| Populations     |          | populations over time.                                                         | and           |           |
| over Time       |          |                                                                                | Computational |           |
|                 |          |                                                                                | Thinking      |           |

# Middle School Earth/Space Science Standards

| Idaho<br>Standard                                             | National<br>Standard | Idaho Performance Standard                                                                                                                       | Practice                                      | ССС                                      |
|---------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------|
| MS-ESS-1.1<br>Earth-Sun-<br>Moon<br>System                    | ESS 1-1              | Develop and use a model of the Earth-Sun-Moon system to describe the cyclic patterns of lunar phases, eclipses of the Sun and Moon, and seasons. | Developing<br>and Using<br>Models             | Patterns                                 |
| MS-ESS-1.2<br>Gravity and<br>Motions in<br>Space              | ESS 1-2              | Develop and use a model to describe the role of gravity in the orbital motions within galaxies and the solar system.                             | Developing<br>and Using<br>Models             | Systems<br>and<br>System<br>Models       |
| MS-ESS-1.3 Scale Properties in the Solar System               | ESS 1-3              | Analyze and interpret data to determine scale properties of objects in the solar system.                                                         | Analyzing &<br>Interpreting<br>Data           | Scale,<br>Proportion,<br>& Quantity      |
| MS-ESS-1.4<br>Geologic<br>Time Scale                          | ESS 1-4              | Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to analyze Earth's history         | Constructing Explanation, Designing Solutions | Scale, Proportion, and Quantity          |
| MS-ESS-2.1<br>Cycling of<br>Earth's<br>Materials              | ESS 2-1              | Develop a model to describe the cycling of Earth's materials and the internal and external flows of energy that drive the rock cycle processes.  | Developing<br>and Using<br>Models             | Stability<br>and<br>Change               |
| MS-ESS-2.2<br>Geoscience<br>Processes at<br>Varying<br>Scales | ESS 2-2              | Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.         | Constructing Explanation, Designing Solutions | Scale,<br>Proportion,<br>and<br>Quantity |

| Idaho                                                           | National |                                                                                                                                                                                              |                                               |                                    |
|-----------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------|
| Standard                                                        | Standard | Idaho Performance Standard                                                                                                                                                                   | Practice                                      | CCC                                |
| MS-ESS-2.3<br>Evidence of<br>Plate<br>Tectonics                 | ESS 2-3  | Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.                              | Analyzing &<br>Interpreting<br>Data           | Patterns                           |
| MS-ESS-2.4 Cycling of Water Through Earth's Systems             | ESS 2-4  | Develop a model to describe the cycling of water through Earth's systems driven by energy from the Sun and the force of gravity.                                                             | Developing<br>and Using<br>Models             | Energy and<br>Matter               |
| MS-ESS-2.5<br>Interacting<br>Air Masses<br>and Weather          | ESS 2-5  | Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions.                                                        | Planning &<br>Carrying Out<br>Investigations  | Cause and<br>Effect                |
| MS-ESS-2.6<br>Atmospheric<br>and Oceanic<br>Circulation         | ESS 2-6  | Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.                    | Developing<br>and Using<br>Models             | Systems<br>and<br>System<br>Models |
| MS-ESS-3.1<br>Uneven<br>Distribution<br>of Earth's<br>Resources | ESS 3-1  | Construct a scientific explanation based on evidence for how Earth's mineral, energy, and groundwater resources are unevenly distributed as a result of past and current geologic processes. | Constructing Explanation, Designing Solutions | Cause and<br>Effect                |
| MS-ESS-3.2<br>Natural<br>Hazards                                | ESS 3-2  | Analyze and interpret data on natural hazards to forecast future catastrophic events to mitigate their effects.                                                                              | Analyzing &<br>Interpreting<br>Data           | Patterns                           |

| Idaho                                                         | National |                                                                                                                                                                               |                                               |                            |
|---------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------|
| Standard                                                      | Standard | Idaho Performance Standard                                                                                                                                                    | Practice                                      | CCC                        |
| MS-ESS-3.3<br>Human<br>Impact on<br>the<br>Environment        | ESS 3-3  | Apply scientific practices to design a method for monitoring human activity and increasing beneficial human influences on the environment.                                    | Constructing Explanation, Designing Solutions | Cause and<br>Effect        |
| MS-ESS-3.4<br>Human<br>Consumption<br>of Natural<br>Resources | ESS 3-4  | Construct an argument based on evidence for how changes in human population and per-capita consumption of natural resources positively and negatively affect Earth's systems. | Engaging in<br>Argument<br>from<br>Evidence   | Cause and<br>Effect        |
| MS-ESS-3.5<br>Climate<br>Variability                          | ESS 3-5  | Ask questions to interpret evidence of the factors that cause climate variability throughout Earth's history.                                                                 | Asking Questions and Defining Problems        | Stability<br>and<br>Change |

# High School Physical Science-Chemistry Standards

| Idaho         | National |                                                                                  |                 |           |
|---------------|----------|----------------------------------------------------------------------------------|-----------------|-----------|
| Standard      | Standard | Idaho Performance Standard                                                       | Practice        | CCC       |
| HS-PSC-1.1    | NA       | Develop models to describe the atomic composition of simple molecules and        | Developing and  | Structure |
| Atomic        |          | extended structures.                                                             | Using Models    | &         |
| Structure     |          |                                                                                  |                 | Function  |
| HS-PSC-1.2    | PS 1-1   | Use the periodic table as a model to predict the relative properties of          | Developing and  | Patterns  |
| Valence       |          | elements based on the patterns of electrons in the outermost energy level of     | Using Models    |           |
| Electrons     |          | atoms.                                                                           |                 |           |
| and           |          |                                                                                  |                 |           |
| Properties of |          |                                                                                  |                 |           |
| Elements      |          |                                                                                  |                 |           |
| HS-PSC-1.3    | PS 1-3   | Plan and conduct an investigation to gather evidence to compare the              | Planning and    | Patterns  |
| Electrical    |          | structure of substances at the bulk scale to infer the strength of electrostatic | Carrying Out    |           |
| Forces and    |          | forces between particles.                                                        | Investigations  |           |
| Bulk Scale    |          |                                                                                  |                 |           |
| Structure     |          |                                                                                  |                 |           |
| HS-PSC-1.4    | PS 1-8   | Develop models to illustrate the changes in the composition of the nucleus of    | Developing and  | Energy    |
| Fission,      |          | the atom and the energy released during the processes of fission, fusion, and    | Using Models    | and       |
| Fusion, &     |          | the various modes of radioactive decay.                                          |                 | Matter    |
| Radioactive   |          |                                                                                  |                 |           |
| Decay         |          |                                                                                  |                 |           |
| HS-PSC-1.5    | PS 2-6   | Communicate scientific and technical information about why the molecular-        | Obtaining,      | Structure |
| Molecular-    |          | level structure is important in the functioning of designed materials.           | Evaluating, and | and       |
| Level         |          |                                                                                  | Communicating   | Function  |
| Structure of  |          |                                                                                  | Information     |           |
| Designed      |          |                                                                                  |                 |           |
| Materials     |          |                                                                                  |                 |           |

| Idaho                                                            | National |                                                                                                                                                                                                                                          |                                              |                                    |
|------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------|
| Standard                                                         | Standard | Idaho Performance Standard                                                                                                                                                                                                               | Practice                                     | CCC                                |
| HS-PSC-2.1<br>Chemical                                           | PS 1-2   | Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the                                                                                         | Constructing Explanations                    | Patterns                           |
| Reactions                                                        |          | periodic table, and knowledge of the patterns of chemical properties.                                                                                                                                                                    | Explanations                                 |                                    |
| HS-PSC-2.2<br>Thermal<br>Energy and<br>Particle<br>Motion        | PS 1-4   | Develop a model to illustrate that the energy transferred during an exothermic or endothermic chemical reaction is based on the bond energy difference between bonds broken (absorption of energy) and bonds formed (release of energy). | Developing and<br>Using Models               | Energy<br>and<br>Matter            |
| HS-PSC-2.3<br>Collision<br>Theory and<br>Rates of<br>Reaction    | PS 1-5   | Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.                                      | Constructing Explanations                    | Patterns                           |
| HS-PSC-2.4<br>Conservation<br>of Mass                            | PS 1-7   | Use mathematical representations to support the claim that the number and type of atoms, and therefore mass, are conserved during a chemical reaction.                                                                                   | Using Mathematics & Computational Thinking   | Energy<br>and<br>Matter            |
| HS-PSC-3.1<br>Wave-<br>Particle<br>Duality of<br>EM<br>Radiation | PS 4-3   | Ask questions to clarify the idea that electromagnetic radiation can be described either by a wave model or a particle model.                                                                                                            | Asking<br>Questions,<br>Defining<br>Problems | Systems<br>and<br>System<br>Models |
| HS-PSC-3.2<br>Energy<br>Change in<br>Components<br>of a System   | PS 3-1   | Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.                                 | Using Mathematics and Computational Thinking | Systems<br>and<br>System<br>Models |

| Idaho                                                                            | National |                                                                                                                                                                                                                                                                                             |                                |                         |
|----------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------|
| Standard                                                                         | Standard | Idaho Performance Standard                                                                                                                                                                                                                                                                  | Practice                       | CCC                     |
| HS-PSC-3.3<br>Macroscopic<br>Energy Due<br>to Particle<br>Position and<br>Motion | PS 3-2   | Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects).                                      | Developing and<br>Using Models | Energy<br>and<br>Matter |
| HS-PSC-3.4* Energy Conversion Device Design                                      | PS 3-3   | Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energyOPTIONAL                                                                                                                                                    | Designing<br>Solutions         | Energy<br>and<br>Matter |
| HS-PSC-3.5 Energy Change Due to Interacting Fields                               | PS 3-5   | Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics). | Developing and<br>Using Models | Cause<br>and<br>Effect  |

# High School Physical Science-Physics Standards

| Idaho Standard                                             | National<br>Standard | Idaho Performance Standard                                                                                                                                                                | Practice                                       | ССС                                |
|------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------|
| HS-PSP-1.1<br>Newton's<br>Second Law of<br>Motion          | PS 2-1               | Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration. | Analyzing and<br>Interpreting<br>Data          | Cause<br>and<br>Effect             |
| HS-PSP-1.2<br>Conservation of<br>Momentum                  | PS 2-2               | Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system                                | Using Mathematics and Computational Thinking   | Systems<br>and<br>System<br>Models |
| HS-PSP-1.3<br>Reducing Force<br>in Collisions<br>Device    | PS 2-3               | Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.                                      | Designing<br>Solutions                         | Cause<br>and<br>Effect             |
| HS-PSP-1.4<br>Gravitational<br>and Electrostatic<br>Forces | PS 2-4               | Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects.                     | Using Mathematics and Computational Thinking   | Patterns                           |
| HS-PSP-1.5<br>Electric Current<br>and Magnetic<br>Fields   | PS 2-5               | Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.           | Planning and<br>Carrying Out<br>Investigations | Cause<br>and<br>Effect             |

| Idaho Standard                                                                | National<br>Standard | Idaho Performance Standard                                                                                                                                                                                                                                                                  | Practice                                                      | ССС                                |
|-------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------|
| HS-PSP-1.6<br>Molecular-Level<br>Structure of<br>Designed<br>Materials        | PS 2-6               | Communicate scientific and technical information about why the molecular-level structure is important in the functioning of designed materials.                                                                                                                                             | Obtaining,<br>Evaluating, and<br>Communicating<br>Information | Structure<br>and<br>Function       |
| HS-PSP-2.1<br>Energy Change<br>in Components<br>of a System                   | PS 3-1               | Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.                                                                                    | Using Mathematics and Computational Thinking                  | Systems<br>and<br>System<br>Models |
| HS-PSP-2.2<br>Macroscopic<br>Energy Due to<br>Particle Position<br>and Motion | PS 3-2               | Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects).                                      | Developing and<br>Using Models                                | Energy<br>and<br>Matter            |
| HS-PSP-2.3<br>Energy<br>Conversion<br>Device Design                           | PS 3-3               | Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.                                                                                                                                                           | Designing<br>Solutions                                        | Energy<br>and<br>Matter            |
| HS-PSP-2.4<br>The Second Law<br>of<br>Thermodynamics                          | PS 3-4               | Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics). | Planning and<br>Carrying Out<br>Investigations                | Systems<br>and<br>System<br>Models |
| HS-PSP-2.5<br>Energy Change<br>Due to<br>Interacting Fields                   | PS 3-5               | Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.                                                                                            | Developing and<br>Using Models                                | Cause<br>and<br>Effect             |

|                                                                           | National |                                                                                                                                                                                                                                |                                                      |                                    |
|---------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------|
| Idaho Standard                                                            | Standard | Idaho Performance Standard                                                                                                                                                                                                     | Practice                                             | CCC                                |
| HS-PSP-3.1<br>Wave Properties                                             | PS 4-1   | Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves                                                                                                | Using<br>Mathematics                                 | Cause<br>and                       |
| in Various Media                                                          |          | traveling in various media.                                                                                                                                                                                                    | and Computational Thinking                           | Effect                             |
| HS-PSP-3.2 Digital Transmission and Storage of Information                | PS 4-2   | Evaluate questions about the advantages of using digital transmission and storage of information.                                                                                                                              | Asking<br>Questions                                  | Stability<br>and<br>Change         |
| HS-PSP-3.3<br>Wave-Particle<br>Duality of<br>Electromagnetic<br>Radiation | PS 4-3   | Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other. | Engaging in<br>Argument from<br>Evidence             | Systems<br>and<br>System<br>Models |
| HS-PSP-3.4<br>Absorption of<br>Electromagnetic<br>Radiation               | PS 4-4   | Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.                                                    | Obtaining, Evaluating, and Communicating Information | Cause<br>and<br>Effect             |
| HS-PSP-3.5<br>Waves &<br>Information<br>Technology                        | PS 4-5   | Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.                                   | Obtaining, Evaluating, and Communicating Information | Cause<br>and<br>Effect             |

# High School Life Science Standards

| Idaho<br>Standard                                         | National<br>Standard | Idaho Performance Standard                                                                                                                                                                          | Practice                                          | CCC                                |
|-----------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------|
| HS-LS-1.1<br>DNA, Genes,<br>and Proteins                  | LS 1-1               | Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells.  | Constructing Explanations and Designing Solutions | Structure<br>and<br>Function       |
| HS-LS-1.2<br>Interacting<br>Body Systems                  | LS 1-2               | Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms.                                          | Developing and<br>Using Models                    | Systems<br>and<br>System<br>Models |
| HS-LS-1.3<br>Feedback<br>Mechanisms<br>and<br>Homeostasis | LS 1-3               | Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis.                                                                                                | Planning and<br>Carrying Out<br>Investigations    | Stability<br>and<br>Change         |
| HS-LS-1.4<br>Cellular<br>Division and<br>Differentiation  | LS 1-4               | Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms.                                                               | Developing and<br>Using Models                    | Systems<br>and<br>System<br>Models |
| HS-LS-1.5 Photosynthesis and Energy Transformation        | LS 1-5               | Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy.                                                                                                   | Developing and<br>Using Models                    | Energy and<br>Matter               |
| HS-LS-1.6<br>Formation of<br>Carbon-Based<br>Molecules    | LS 1-6               | Construct an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules. | Constructing Explanations and Designing Solutions | Energy and<br>Matter               |

| Idaho<br>Standard                                                | National<br>Standard | Idaho Performance Standard                                                                                                                                                                                                      | Practice                                           | CCC                                      |
|------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------|
| HS-LS-1.7<br>Cellular<br>Respiration<br>and Energy<br>Transfer   | LS 1-7               | Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed, resulting in a net transfer of energy. | Developing and<br>Using Models                     | Energy and<br>Matter                     |
| HS-LS-2.1<br>Carrying<br>Capacity of<br>Ecosystems               | LS 2-1               | Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales.                                                                       | Using Mathematics, Computational Thinking          | Scale,<br>Proportion,<br>and<br>Quantity |
| HS-LS-2.2<br>Biodiversity<br>and<br>Populations in<br>Ecosystems | LS 2-2               | Use mathematical representations to support explanations that biotic and abiotic factors affect biodiversity at different scales within an ecosystem.                                                                           | Using<br>Mathematics,<br>Computational<br>Thinking | Scale,<br>Proportion,<br>and<br>Quantity |
| HS-LS-2.3<br>Aerobic and<br>Anaerobic<br>Cycling of<br>Matter    | LS 2-3               | Construct an explanation using mathematical representations to support claims for the flow of energy through trophic levels and the cycling of matter in an ecosystem.                                                          | Constructing Explanations and Designing Solutions  | Energy and<br>Matter                     |
| HS-LS-2.4<br>Cycling of<br>Carbon in<br>Ecosystems               | LS 2-5               | Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.                                                         | Developing and<br>Using Models                     | Systems<br>and<br>System<br>Models       |
| HS-LS-2.5<br>Ecosystem<br>Dynamics                               | LS 2-6               | Evaluate the claims, evidence, and reasoning that changing the conditions of a static ecosystem may result in a new ecosystem.                                                                                                  | Engaging in<br>Argument from<br>Evidence           | Stability<br>and<br>Change               |

| Idaho           | National |                                                                             | _             |             |
|-----------------|----------|-----------------------------------------------------------------------------|---------------|-------------|
| Standard        | Standard | Idaho Performance Standard                                                  | Practice      | CCC         |
| HS-LS-2.6       | LS 2-7   | Design, evaluate, and/or refine practices used to manage a natural          | Constructing  | Stability   |
| Human Impact    |          | resource based on direct and indirect influences of human activities on     | Explanations  | and         |
| Reduction       |          | biodiversity and ecosystem health.                                          | and Designing | Change      |
| Solution        |          |                                                                             | Solutions     |             |
| HS-LS-2.7       | LS 2-8   | Evaluate the evidence for the role of group behavior on individual and      | Engaging in   | Cause and   |
| Social          |          | species' ability to survive and reproduce.                                  | Argument from | Effect      |
| Interactions    |          |                                                                             | Evidence      |             |
| and Group       |          |                                                                             |               |             |
| Behavior        |          |                                                                             |               |             |
| HS-LS-3.1       | LS 3-1   | Ask questions to clarify relationships about the role of DNA and            | Asking        | Cause and   |
| Chromosomal     |          | chromosomes in coding the instructions for characteristic traits passed     | Questions and | Effect      |
| Inheritance     |          | from parents to offspring                                                   | Defining      |             |
|                 |          |                                                                             | Problems      |             |
| HS-LS-3.2       | LS 3-2   | Make and defend a claim based on evidence that inheritable genetic          | Engaging in   | Cause and   |
| Inheritable     |          | variations may result from: (1) new genetic combinations through meiosis,   | Argument from | Effect      |
| Genetic         |          | (2) viable errors occurring during replication, and/or (3) mutations caused | Evidence      |             |
| Variation       |          | by environmental factors.                                                   |               |             |
| HS-LS-3.3       | LS 3-3   | Apply concepts of probability and statistical analysis to explain the       | Analyzing and | Scale,      |
| Variation and   |          | variation and distribution of expressed traits in a population.             | Interpreting  | Proportion, |
| Distribution of |          |                                                                             | Data          | and         |
| Traits          |          |                                                                             |               | Quantity    |
| HS-LS-4.1       | LS 4-1   | Communicate scientific information that common ancestry and biological      | Obtaining,    | Patterns    |
| Evidence of     |          | evolution are supported by multiple lines of empirical evidence.            | Evaluating,   |             |
| Common          |          |                                                                             | Communicating |             |
| Ancestry and    |          |                                                                             | Information   |             |
| Diversity       |          |                                                                             |               |             |

| Idaho<br>Standard                                          | National<br>Standard | Idaho Performance Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Practice                                          | CCC                 |
|------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------|
| HS-LS-4.2<br>Four Factors of<br>Natural<br>Selection       | LS 4-2               | Construct an explanation based on evidence that the process of evolution, through the mechanism of natural selection, primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment. | Constructing Explanations and Designing Solutions | Cause and<br>Effect |
| HS-LS-4.3<br>Adaptation of<br>Populations                  | LS 4-3               | Apply concepts of probability and statistical analysis to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait                                                                                                                                                                                                                                                                                | Analyzing and<br>Interpreting<br>Data             | Patterns            |
| HS-LS-4.4<br>Natural<br>Selection Leads<br>to Adaptation   | LS 4-4               | Construct an explanation based on evidence for how natural selection leads to adaptation of populations.                                                                                                                                                                                                                                                                                                                                                                         | Constructing Explanations and Designing Solutions | Cause and<br>Effect |
| HS-LS-4.5 Environmental Change - Speciation and Extinction | LS 4-5               | Evaluate models that demonstrate how changes in an environment may result in the evolution of a population of a given species; the emergence of new species over generations; or the extinction of other species due to the processes of genetic drift, gene flow, mutation, and natural selection.                                                                                                                                                                              | Engaging in<br>Argument from<br>Evidence          | Cause and<br>Effect |

# High School Earth and Space Science Standards

| Idaho Standard                                          | National<br>Standard | Idaho Performance Standard                                                                                                                                                                          | Practice                                                      | ССС                                     |
|---------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------|
| HS-ESS-1.1<br>Nuclear Fusion<br>and the Sun's<br>Energy | ESS 1-1              | Develop a model based on evidence to illustrate the life span of the Sun and the role of nuclear fusion in the Sun's core to release energy that eventually reaches Earth in the form of radiation. | Developing and Using Models                                   | Scale,<br>Proportion<br>and<br>Quantity |
| HS-ESS-1.2<br>The Big Bang<br>Theory                    | ESS 1-2              | Construct an explanation of the current model of the origin of the universe based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe. | Constructing<br>Explanations                                  | Energy<br>and<br>Matter                 |
| HS-ESS-1.3<br>Stellar<br>Nucleosynthesis                | ESS 1-3              | Communicate scientific ideas about the way stars, over their life cycle, transform elements.                                                                                                        | Obtaining,<br>Evaluating, and<br>Communicating<br>Information | Energy<br>and<br>Matter                 |
| HS-ESS-1.4<br>Orbital Motions                           | ESS 1-4              | Use mathematical or computational representations to predict the motion of orbiting objects in the solar system.                                                                                    | Planning and<br>Carrying Out<br>Investigations                | Structure<br>and<br>Function            |
| HS-ESS-1.5<br>Evidence of<br>Plate Tectonics            | ESS 1-5              | Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks.                                        | Engaging in<br>Argument from<br>Evidence                      | Patterns                                |
| HS-ESS-1.6<br>Evidence of the<br>Earth's History        | ESS 1-6              | Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth's formation and early history.                      | Constructing<br>Explanations                                  | Stability<br>and<br>Change              |
| HS-ESS-2.1<br>The Creation of<br>Landforms              | ESS 2-1              | Develop a model to illustrate how Earth's internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.                             | Developing and<br>Using Models                                | Stability<br>and<br>Change              |
| HS-ESS-2.2<br>Feedback in<br>Earth's Systems            | ESS 2-2              | Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems.                                                        | Analyzing and<br>Interpreting<br>Data                         | Stability<br>and<br>Change              |

|                  | National |                                                                           |                |           |
|------------------|----------|---------------------------------------------------------------------------|----------------|-----------|
| Idaho Standard   | Standard | Idaho Performance Standard                                                | Practice       | ССС       |
| HS-ESS-2.3       | ESS 2-3  | Develop a model based on evidence of Earth's interior to describe the     | Developing and | Energy    |
| Cycling of       |          | cycling of matter by thermal convection                                   | Using Models   | and       |
| Matter in the    |          |                                                                           |                | Matter    |
| Earth's Interior |          |                                                                           |                |           |
| HS-ESS-2.4       | ESS 2-4  | Use a model to describe how variations in the flow of energy into and out | Developing and | Cause and |
| Energy and       |          | of Earth's systems result in variations in climate.                       | Using Models   | Effect    |
| Climate          |          |                                                                           |                |           |
| Variation        |          |                                                                           |                |           |
| HS-ESS-2.5       | ESS 2-5  | Plan and conduct an investigation of how the chemical and physical        | Planning and   | Structure |
| Interactions of  |          | properties of water contribute to the mechanical and chemical             | Carrying Out   | and       |
| the Hydrologic   |          | mechanisms that affect Earth materials and surface processes.             | Investigations | Function  |
| and Rock Cycles  |          |                                                                           |                |           |
| HS-ESS-2.6       | ESS 2-6  | Develop a model to describe the cycling of carbon among the               | Developing and | Energy    |
| Carbon Cycling   |          | hydrosphere, atmosphere, geosphere, and biosphere.                        | Using Models   | and       |
| in Earth's       |          |                                                                           |                | Matter    |
| Systems          |          |                                                                           |                |           |
| HS-ESS-2.7       | ESS 2-7  | Construct an argument based on evidence about the simultaneous            | Engaging in    | Stability |
| Coevolution of   |          | coevolution of Earth's systems and life on Earth.                         | Argument from  | and       |
| Life and Earth's |          |                                                                           | Evidence       | Change    |
| Systems          |          |                                                                           |                |           |
| HS-ESS-3.1       | ESS 3-1  | Construct an explanation based on evidence for how the availability of    | Constructing   | Cause and |
| Global Impacts   |          | natural resources, occurrence of natural hazards, and changes in climate  | Explanations   | Effect    |
| on Human         |          | have influenced human activity.                                           |                |           |
| Activity         |          |                                                                           |                |           |
| HS-ESS-3.2       | ESS 3-2  | Evaluate competing design solutions for developing, managing, and         | Engaging in    | Structure |
| Cost-Benefit     |          | utilizing energy and mineral resources based on cost-benefit ratios.      | Argument from  | and       |
| Ratio Design     |          |                                                                           | Evidence       | Function  |
| Solutions        |          |                                                                           |                |           |

|                 | National |                                                                             |                 |           |
|-----------------|----------|-----------------------------------------------------------------------------|-----------------|-----------|
| Idaho Standard  | Standard | Idaho Performance Standard                                                  | Practice        | ССС       |
| HS-ESS-3.3      | ESS 3-3  | Illustrate relationships among management of natural resources, the         | Developing and  | Stability |
| Biodiversity,   |          | sustainability of human populations, and biodiversity.                      | Using Models    | and       |
| Natural         |          |                                                                             |                 | Change    |
| Resources, and  |          |                                                                             |                 |           |
| Human           |          |                                                                             |                 |           |
| Sustainability  |          |                                                                             |                 |           |
| HS-ESS-3.4      | ESS 3-4  | Evaluate or refine a scientific or technological solution that mitigates or | Designing       | Stability |
| Reducing        |          | enhances human influences on natural systems.                               | Solutions       | and       |
| Human Impact    |          |                                                                             |                 | Change    |
| Design          |          |                                                                             |                 |           |
| Solutions       |          |                                                                             |                 |           |
| HS-ESS-3.5      | ESS 3-5  | Analyze geoscience data and the results from global climate models to       | Analyzing and   | Stability |
| Climate         |          | make an evidence-based explanation of how climate variability can affect    | Interpreting    | and       |
| Variability and |          | Earth's systems on a global and regional scale.                             | Data            | Change    |
| Future Impacts  |          |                                                                             |                 |           |
| HS-ESS-3.6      | ESS 3-6  | Communicate how relationships among Earth systems are being                 | Obtaining,      | Systems   |
| Human Impacts   |          | influenced by human activity.                                               | Evaluating, and | and       |
| on Earth        |          |                                                                             | Communicating   | System    |
| Systems         |          |                                                                             | Information     | Models    |

# **For Questions Contact**

Andrea Baerwald, Science Coordinator Idaho State Department of Education 650 W State Street, Boise, ID 83702 208 332 6890 | www.sde.idaho.gov